在数学中,斯特林数 用于解决各种数学分析 和组合数学 问题,斯特林数是两组不同的数,均是18世纪由詹姆斯·斯特林 第一类斯特林数 第二类斯特林数 拉赫数 [1] 
 第一类斯特林数 
定义 第一类斯特林数 递降阶乘 展开式的各项系数,即
  
    
      
        ( 
        x 
        
          ) 
          
            n 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        s 
        ( 
        n 
        , 
        k 
        ) 
        
          x 
          
            k 
           
         
         
     
    {\displaystyle (x)_{n}=\sum _{k=0}^{n}s(n,k)x^{k}\,} 
      
  
    
      
        s 
        ( 
        n 
        , 
        k 
        ) 
         
     
    {\displaystyle s(n,k)\,} 
      
  
    
      
        0 
        ≤ 
        k 
        ≤ 
        n 
         
     
    {\displaystyle 0\leq k\leq n\,} 
      
  
    
      
        ( 
        x 
        
          ) 
          
            3 
           
         
        = 
        x 
        ( 
        x 
        − 
        1 
        ) 
        ( 
        x 
        − 
        2 
        ) 
         
     
    {\displaystyle (x)_{3}=x(x-1)(x-2)\,} 
      则
  
    
      
        ( 
        x 
        
          ) 
          
            3 
           
         
        = 
        0 
        ⋅ 
        
          x 
          
            0 
           
         
        + 
        2 
        ⋅ 
        x 
        − 
        3 
        ⋅ 
        
          x 
          
            2 
           
         
        + 
        1 
        ⋅ 
        
          x 
          
            3 
           
         
         
     
    {\displaystyle (x)_{3}=0\cdot x^{0}+2\cdot x-3\cdot x^{2}+1\cdot x^{3}\,} 
      于是
  
    
      
        s 
        ( 
        3 
        , 
        0 
        ) 
        = 
        0 
         
     
    {\displaystyle s(3,0)=0\,} 
      
  
    
      
        s 
        ( 
        3 
        , 
        1 
        ) 
        = 
        2 
         
     
    {\displaystyle s(3,1)=2\,} 
      
  
    
      
        s 
        ( 
        3 
        , 
        2 
        ) 
        = 
        − 
        3 
         
     
    {\displaystyle s(3,2)=-3\,} 
      
  
    
      
        s 
        ( 
        3 
        , 
        3 
        ) 
        = 
        1 
         
     
    {\displaystyle s(3,3)=1\,} 
      
由此可知,
  
    
      
        s 
        ( 
        n 
        , 
        k 
        ) 
         
     
    {\displaystyle s(n,k)\,} 
      代数数 ,或称为有符号(第一类)斯特林数(英语:signed Stirling numbers of the first kind)。
有符号斯特林数的绝对值
  
    
      
        
          | 
         
        s 
        ( 
        n 
        , 
        k 
        ) 
        
          | 
         
         
     
    {\displaystyle |s(n,k)|\,} 
      
  
    
      
        n 
         
     
    {\displaystyle n\,} 
      
  
    
      
        k 
         
     
    {\displaystyle k\,} 
      
  
    
      
        
          | 
         
        s 
        ( 
        n 
        , 
        k 
        ) 
        
          | 
         
         
     
    {\displaystyle |s(n,k)|\,} 
      算术数 ,或称为无符号(第一类)斯特林数(英语:unsigned Stirling numbers of the first kind)。无符号斯特林数一般可以记为
  
    
      
        c 
        ( 
        n 
        , 
        k 
        ) 
         
     
    {\displaystyle c(n,k)\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
         
     
    {\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]\,} 
      
  
    
      
        1 
         
     
    {\displaystyle 1\,} 
      
  
    
      
        2 
         
     
    {\displaystyle 2\,} 
      
  
    
      
        3 
         
     
    {\displaystyle 3\,} 
      
  
    
      
        0 
         
     
    {\displaystyle 0\,} 
      
  
    
      
        1 
         
     
    {\displaystyle 1\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  1 
                 
                 
              
                
                  2 
                 
                
                  3 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}&1&\\2&&3\end{matrix}}\right)\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  1 
                 
                 
              
                
                  3 
                 
                
                  2 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}&1&\\3&&2\end{matrix}}\right)\,} 
      
  
    
      
        2 
         
     
    {\displaystyle 2\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  1 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}1\end{matrix}}\right)\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  2 
                 
                
                  3 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}2&3\end{matrix}}\right)\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  1 
                 
                
                  2 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}1&2\end{matrix}}\right)\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  3 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}3\end{matrix}}\right)\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  1 
                 
                
                  3 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}1&3\end{matrix}}\right)\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  2 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}2\end{matrix}}\right)\,} 
      
  
    
      
        3 
         
     
    {\displaystyle 3\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  1 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}1\end{matrix}}\right)\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  2 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}2\end{matrix}}\right)\,} 
      
  
    
      
        
          ( 
          
            
              
                
                  3 
                 
               
             
           
          ) 
         
         
     
    {\displaystyle \left({\begin{matrix}3\end{matrix}}\right)\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  0 
                 
               
             
           
          ] 
         
        = 
        0 
         
     
    {\displaystyle \left[{\begin{matrix}3\\0\end{matrix}}\right]=0\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  1 
                 
               
             
           
          ] 
         
        = 
        2 
         
     
    {\displaystyle \left[{\begin{matrix}3\\1\end{matrix}}\right]=2\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          ] 
         
        = 
        3 
         
     
    {\displaystyle \left[{\begin{matrix}3\\2\end{matrix}}\right]=3\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  3 
                 
               
             
           
          ] 
         
        = 
        1 
         
     
    {\displaystyle \left[{\begin{matrix}3\\3\end{matrix}}\right]=1\,} 
      
  
    
      
        s 
        ( 
        n 
        , 
        k 
        ) 
         
     
    {\displaystyle s(n,k)\,} 
      
  
    
      
        n 
        = 
        3 
         
     
    {\displaystyle n=3\,} 
      
与有符号斯特林数类似,无符号斯特林数可以定义为对应递进阶乘 展开式的各项系数,即
  
    
      
        ( 
        x 
        
          ) 
          
            
              n 
              ¯ 
             
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
        
          x 
          
            k 
           
         
         
     
    {\displaystyle (x)^{\overline {n}}=\sum _{k=0}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right]x^{k}\,} 
      其中,
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
         
     
    {\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]\,} 
      
  
    
      
        0 
        ≤ 
        k 
        ≤ 
        n 
         
     
    {\displaystyle 0\leq k\leq n\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
         
     
    {\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]\,} 
      高斯二项式系数 。
有符号斯特林数和无符号斯特林数有如下关系:
  
    
      
        s 
        ( 
        n 
        , 
        k 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
            − 
            k 
           
         
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
         
     
    {\displaystyle s(n,k)=(-1)^{n-k}\left[{\begin{matrix}n\\k\end{matrix}}\right]\,} 
      拓展示例 无符号斯特林数有更多的应用。例如,将
  
    
      
        n 
         
     
    {\displaystyle n\,} 
      
  
    
      
        k 
         
     
    {\displaystyle k\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
         
     
    {\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  4 
                 
               
              
                
                  2 
                 
               
             
           
          ] 
         
        = 
        11 
         
     
    {\displaystyle \left[{\begin{matrix}4\\2\end{matrix}}\right]=11\,} 
      
(A,B)(C,D) 
(A,C)(B,D) 
(A,D)(B,C) 
(A)(B,C,D) 
(A)(B,D,C) 
(B)(A,C,D) 
(B)(A,D,C) 
(C)(A,B,D) 
(C)(A,D,B) 
(D)(A,B,C) 
(D)(A,C,B) 或用有向图 [来源请求] 
递推关系式 无符号斯特林数有如下递推关系式 :
  
    
      
        
          [ 
          
            
              
                
                  n 
                  + 
                  1 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
        = 
        n 
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
        + 
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                  − 
                  1 
                 
               
             
           
          ] 
         
         
     
    {\displaystyle \left[{\begin{matrix}n+1\\k\end{matrix}}\right]=n\left[{\begin{matrix}n\\k\end{matrix}}\right]+\left[{\begin{matrix}n\\k-1\end{matrix}}\right]\,} 
      其中,
  
    
      
        k 
        > 
        0 
       
     
    {\displaystyle k>0} 
      
  
    
      
        
          [ 
          
            
              
                
                  0 
                 
               
              
                
                  0 
                 
               
             
           
          ] 
         
        = 
        1 
         
     
    {\displaystyle \left[{\begin{matrix}0\\0\end{matrix}}\right]=1\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  0 
                 
               
             
           
          ] 
         
        = 
        
          [ 
          
            
              
                
                  0 
                 
               
              
                
                  n 
                 
               
             
           
          ] 
         
        = 
        0 
         
     
    {\displaystyle \left[{\begin{matrix}n\\0\end{matrix}}\right]=\left[{\begin{matrix}0\\n\end{matrix}}\right]=0\,} 
      
  
    
      
        n 
        > 
        0 
       
     
    {\displaystyle n>0} 
      
有符号斯特林数有如下递推关系式:
  
    
      
        s 
        ( 
        n 
        + 
        1 
        , 
        k 
        ) 
        = 
        − 
        n 
        s 
        ( 
        n 
        , 
        k 
        ) 
        + 
        s 
        ( 
        n 
        , 
        k 
        − 
        1 
        ) 
       
     
    {\displaystyle s(n+1,k)=-ns(n,k)+s(n,k-1)} 
      第一类斯特林数表 下表其实是一部分无符号斯特林数,要想获得有符号斯特林数,可以通过它们之间的关系式:
  
    
      
        s 
        ( 
        n 
        , 
        k 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
            − 
            k 
           
         
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
         
     
    {\displaystyle s(n,k)=(-1)^{n-k}\left[{\begin{matrix}n\\k\end{matrix}}\right]\,} 
      求得。
 k 
n 
0 
1 
2 
3 
4 
5 
6
 0
 
1 
 1
 
0 
1 
 2
 
0 
1 
1 
 3
 
0 
2 
3 
1 
 4
 
0 
6 
11 
6 
1 
 5
 
0 
24 
50 
35 
10 
1 
 6
 
0 
120 
274 
225 
85 
15 
1
 
简单性质 观察前面的“第一类斯特林数表”,我们可以得到一些简单的性质:
  
    
      
        
          [ 
          
            
              
                
                  0 
                 
               
              
                
                  0 
                 
               
             
           
          ] 
         
        = 
        1 
         
     
    {\displaystyle \left[{\begin{matrix}0\\0\end{matrix}}\right]=1\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  0 
                 
               
             
           
          ] 
         
        = 
        0 
         
     
    {\displaystyle \left[{\begin{matrix}n\\0\end{matrix}}\right]=0\,} 
      
  
    
      
        n 
        > 
        0 
         
     
    {\displaystyle n>0\,} 
      如果
  
    
      
        k 
        > 
        0 
         
     
    {\displaystyle k>0\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  0 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
        = 
        0 
         
     
    {\displaystyle \left[{\begin{matrix}0\\k\end{matrix}}\right]=0\,} 
      或更一般地,如果
  
    
      
        k 
        > 
        n 
         
     
    {\displaystyle k>n\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
        = 
        0 
         
     
    {\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]=0\,} 
      还有
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  1 
                 
               
             
           
          ] 
         
        = 
        ( 
        n 
        − 
        1 
        ) 
        ! 
         
     
    {\displaystyle \left[{\begin{matrix}n\\1\end{matrix}}\right]=(n-1)!\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  n 
                 
               
             
           
          ] 
         
        = 
        1 
         
     
    {\displaystyle \left[{\begin{matrix}n\\n\end{matrix}}\right]=1\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  n 
                  − 
                  1 
                 
               
             
           
          ] 
         
        = 
        
          
            
              ( 
             
            
              n 
              2 
             
            
              ) 
             
           
         
         
     
    {\displaystyle \left[{\begin{matrix}n\\n-1\end{matrix}}\right]={n \choose 2}\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  n 
                  − 
                  2 
                 
               
             
           
          ] 
         
        = 
        
          
            1 
            4 
           
         
        ( 
        3 
        n 
        − 
        1 
        ) 
        
          
            
              ( 
             
            
              n 
              3 
             
            
              ) 
             
           
         
         
     
    {\displaystyle \left[{\begin{matrix}n\\n-2\end{matrix}}\right]={\frac {1}{4}}(3n-1){n \choose 3}\,} 
      
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  n 
                  − 
                  3 
                 
               
             
           
          ] 
         
        = 
        
          
            
              ( 
             
            
              n 
              2 
             
            
              ) 
             
           
         
        
          
            
              ( 
             
            
              n 
              4 
             
            
              ) 
             
           
         
         
     
    {\displaystyle \left[{\begin{matrix}n\\n-3\end{matrix}}\right]={n \choose 2}{n \choose 4}\,} 
      注:这里记号
  
    
      
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
         
     
    {\displaystyle {n \choose k}\,} 
      组合数 。
其他性质  第二类斯特林数 
定义 第二类斯特林数 递降阶乘 定义为
  
    
      
        
          x 
          
            n 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
        ( 
        x 
        
          ) 
          
            k 
           
         
         
     
    {\displaystyle x^{n}=\sum _{k=0}^{n}\left\{{\begin{matrix}n\\k\end{matrix}}\right\}(x)_{k}\,} 
      其中,
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
         
     
    {\displaystyle \left\{{\begin{matrix}n\\k\end{matrix}}\right\}\,} 
      [2] [3] 
  
    
      
        S 
        ( 
        n 
        , 
        k 
        ) 
         
     
    {\displaystyle S(n,k)\,} 
      [4] 
  
    
      
        
          x 
          
            3 
           
         
        = 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        ( 
        x 
        
          ) 
          
            0 
           
         
        + 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  1 
                 
               
             
           
          } 
         
        ( 
        x 
        
          ) 
          
            1 
           
         
        + 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        ( 
        x 
        
          ) 
          
            2 
           
         
        + 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  3 
                 
               
             
           
          } 
         
        ( 
        x 
        
          ) 
          
            3 
           
         
         
     
    {\displaystyle x^{3}=\left\{{\begin{matrix}3\\0\end{matrix}}\right\}(x)_{0}+\left\{{\begin{matrix}3\\1\end{matrix}}\right\}(x)_{1}+\left\{{\begin{matrix}3\\2\end{matrix}}\right\}(x)_{2}+\left\{{\begin{matrix}3\\3\end{matrix}}\right\}(x)_{3}\,} 
      即
  
    
      
        
          x 
          
            3 
           
         
        = 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        + 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  1 
                 
               
             
           
          } 
         
        x 
        + 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        x 
        ( 
        x 
        − 
        1 
        ) 
        + 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  3 
                 
               
             
           
          } 
         
        x 
        ( 
        x 
        − 
        1 
        ) 
        ( 
        x 
        − 
        2 
        ) 
         
     
    {\displaystyle x^{3}=\left\{{\begin{matrix}3\\0\end{matrix}}\right\}+\left\{{\begin{matrix}3\\1\end{matrix}}\right\}x+\left\{{\begin{matrix}3\\2\end{matrix}}\right\}x(x-1)+\left\{{\begin{matrix}3\\3\end{matrix}}\right\}x(x-1)(x-2)\,} 
      将递降阶乘展开并合并同类项,得
  
    
      
        
          x 
          
            3 
           
         
        = 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        + 
        
          ( 
          
            
              { 
              
                
                  
                    
                      3 
                     
                   
                  
                    
                      1 
                     
                   
                 
               
              } 
             
            − 
            
              { 
              
                
                  
                    
                      3 
                     
                   
                  
                    
                      2 
                     
                   
                 
               
              } 
             
            + 
            2 
            
              { 
              
                
                  
                    
                      3 
                     
                   
                  
                    
                      3 
                     
                   
                 
               
              } 
             
           
          ) 
         
        x 
        + 
        
          ( 
          
            
              { 
              
                
                  
                    
                      3 
                     
                   
                  
                    
                      2 
                     
                   
                 
               
              } 
             
            − 
            3 
            
              { 
              
                
                  
                    
                      3 
                     
                   
                  
                    
                      3 
                     
                   
                 
               
              } 
             
           
          ) 
         
        
          x 
          
            2 
           
         
        + 
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  3 
                 
               
             
           
          } 
         
        
          x 
          
            3 
           
         
         
     
    {\displaystyle x^{3}=\left\{{\begin{matrix}3\\0\end{matrix}}\right\}+\left(\left\{{\begin{matrix}3\\1\end{matrix}}\right\}-\left\{{\begin{matrix}3\\2\end{matrix}}\right\}+2\left\{{\begin{matrix}3\\3\end{matrix}}\right\}\right)x+\left(\left\{{\begin{matrix}3\\2\end{matrix}}\right\}-3\left\{{\begin{matrix}3\\3\end{matrix}}\right\}\right)x^{2}+\left\{{\begin{matrix}3\\3\end{matrix}}\right\}x^{3}\,} 
      比较等式两边系数,得
  
    
      
        
          
            { 
            
              
                
                  
                    { 
                    
                      
                        
                          
                            3 
                           
                         
                        
                          
                            0 
                           
                         
                       
                     
                    } 
                   
                  = 
                  0 
                 
               
              
                
                  
                    { 
                    
                      
                        
                          
                            3 
                           
                         
                        
                          
                            1 
                           
                         
                       
                     
                    } 
                   
                  − 
                  
                    { 
                    
                      
                        
                          
                            3 
                           
                         
                        
                          
                            2 
                           
                         
                       
                     
                    } 
                   
                  + 
                  2 
                  
                    { 
                    
                      
                        
                          
                            3 
                           
                         
                        
                          
                            3 
                           
                         
                       
                     
                    } 
                   
                  = 
                  0 
                 
               
              
                
                  
                    { 
                    
                      
                        
                          
                            3 
                           
                         
                        
                          
                            2 
                           
                         
                       
                     
                    } 
                   
                  − 
                  3 
                  
                    { 
                    
                      
                        
                          
                            3 
                           
                         
                        
                          
                            3 
                           
                         
                       
                     
                    } 
                   
                  = 
                  0 
                 
               
              
                
                  
                    { 
                    
                      
                        
                          
                            3 
                           
                         
                        
                          
                            3 
                           
                         
                       
                     
                    } 
                   
                  = 
                  1 
                 
               
             
             
         
         
     
    {\displaystyle {\begin{cases}\left\{{\begin{matrix}3\\0\end{matrix}}\right\}=0\\\left\{{\begin{matrix}3\\1\end{matrix}}\right\}-\left\{{\begin{matrix}3\\2\end{matrix}}\right\}+2\left\{{\begin{matrix}3\\3\end{matrix}}\right\}=0\\\left\{{\begin{matrix}3\\2\end{matrix}}\right\}-3\left\{{\begin{matrix}3\\3\end{matrix}}\right\}=0\\\left\{{\begin{matrix}3\\3\end{matrix}}\right\}=1\end{cases}}\,} 
      解得
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        = 
        0 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\0\end{matrix}}\right\}=0\,} 
      
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  1 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\1\end{matrix}}\right\}=1\,} 
      
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        = 
        3 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\2\end{matrix}}\right\}=3\,} 
      
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  3 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\3\end{matrix}}\right\}=1\,} 
      
第二类斯特林数计算的是将含有
  
    
      
        n 
         
     
    {\displaystyle n\,} 
      
  
    
      
        k 
         
     
    {\displaystyle k\,} 
      [5] 
  
    
      
        
          { 
          
            1 
            , 
            2 
            , 
            3 
           
          } 
         
         
     
    {\displaystyle \left\{1,2,3\right\}\,} 
      
  
    
      
        0 
         
     
    {\displaystyle 0\,} 
      
  
    
      
        1 
         
     
    {\displaystyle 1\,} 
      
  
    
      
        
          { 
          
            1 
            , 
            2 
            , 
            3 
           
          } 
         
         
     
    {\displaystyle \left\{1,2,3\right\}\,} 
      
  
    
      
        2 
         
     
    {\displaystyle 2\,} 
      
  
    
      
        
          { 
          1 
          } 
         
         
     
    {\displaystyle \left\{1\right\}\,} 
      
  
    
      
        
          { 
          
            2 
            , 
            3 
           
          } 
         
         
     
    {\displaystyle \left\{2,3\right\}\,} 
      
  
    
      
        
          { 
          
            1 
            , 
            2 
           
          } 
         
         
     
    {\displaystyle \left\{1,2\right\}\,} 
      
  
    
      
        
          { 
          3 
          } 
         
         
     
    {\displaystyle \left\{3\right\}\,} 
      
  
    
      
        
          { 
          2 
          } 
         
         
     
    {\displaystyle \left\{2\right\}\,} 
      
  
    
      
        
          { 
          
            1 
            , 
            3 
           
          } 
         
         
     
    {\displaystyle \left\{1,3\right\}\,} 
      
  
    
      
        3 
         
     
    {\displaystyle 3\,} 
      
  
    
      
        
          { 
          1 
          } 
         
         
     
    {\displaystyle \left\{1\right\}\,} 
      
  
    
      
        
          { 
          2 
          } 
         
         
     
    {\displaystyle \left\{2\right\}\,} 
      
  
    
      
        
          { 
          3 
          } 
         
         
     
    {\displaystyle \left\{3\right\}\,} 
      
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        = 
        0 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\0\end{matrix}}\right\}=0\,} 
      
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  1 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\1\end{matrix}}\right\}=1\,} 
      
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        = 
        3 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\2\end{matrix}}\right\}=3\,} 
      
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  3 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\3\end{matrix}}\right\}=1\,} 
      
第二类斯特林数可以使用以下公式进行计算:[6] 
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
        = 
        
          
            1 
            
              k 
              ! 
             
           
         
        
          ∑ 
          
            i 
            = 
            0 
           
          
            k 
           
         
        ( 
        − 
        1 
        
          ) 
          
            i 
           
         
        
          ( 
          
            
              
                
                  k 
                 
               
              
                
                  i 
                 
               
             
           
          ) 
         
        ( 
        k 
        − 
        i 
        
          ) 
          
            n 
           
         
         
     
    {\displaystyle \left\{{\begin{matrix}n\\k\end{matrix}}\right\}={\frac {1}{k!}}\sum _{i=0}^{k}(-1)^{i}\left({\begin{matrix}k\\i\end{matrix}}\right)(k-i)^{n}\,} 
      取
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
         
     
    {\displaystyle \left\{{\begin{matrix}3\\2\end{matrix}}\right\}\,} 
      
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        = 
        
          
            1 
            
              2 
              ! 
             
           
         
        
          ∑ 
          
            i 
            = 
            0 
           
          
            2 
           
         
        ( 
        − 
        1 
        
          ) 
          
            i 
           
         
        
          ( 
          
            
              
                
                  2 
                 
               
              
                
                  i 
                 
               
             
           
          ) 
         
        ( 
        2 
        − 
        i 
        
          ) 
          
            3 
           
         
         
     
    {\displaystyle \left\{{\begin{matrix}3\\2\end{matrix}}\right\}={\frac {1}{2!}}\sum _{i=0}^{2}(-1)^{i}\left({\begin{matrix}2\\i\end{matrix}}\right)(2-i)^{3}\,} 
      即
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        = 
        
          
            1 
            2 
           
         
        
          ( 
          
            
              ( 
              
                
                  
                    
                      2 
                     
                   
                  
                    
                      0 
                     
                   
                 
               
              ) 
             
            × 
            
              2 
              
                3 
               
             
            − 
            
              ( 
              
                
                  
                    
                      2 
                     
                   
                  
                    
                      1 
                     
                   
                 
               
              ) 
             
            × 
            
              1 
              
                3 
               
             
            + 
            
              ( 
              
                
                  
                    
                      2 
                     
                   
                  
                    
                      2 
                     
                   
                 
               
              ) 
             
            × 
            
              0 
              
                3 
               
             
           
          ) 
         
         
     
    {\displaystyle \left\{{\begin{matrix}3\\2\end{matrix}}\right\}={\frac {1}{2}}\left(\left({\begin{matrix}2\\0\end{matrix}}\right)\times 2^{3}-\left({\begin{matrix}2\\1\end{matrix}}\right)\times 1^{3}+\left({\begin{matrix}2\\2\end{matrix}}\right)\times 0^{3}\right)\,} 
      于是
  
    
      
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        = 
        
          
            1 
            2 
           
         
        
          ( 
          
            1 
            × 
            8 
            − 
            2 
            × 
            1 
            + 
            1 
            × 
            0 
           
          ) 
         
        = 
        3 
         
     
    {\displaystyle \left\{{\begin{matrix}3\\2\end{matrix}}\right\}={\frac {1}{2}}\left(1\times 8-2\times 1+1\times 0\right)=3\,} 
      拓展示例 将
  
    
      
        n 
         
     
    {\displaystyle n\,} 
      
  
    
      
        k 
         
     
    {\displaystyle k\,} 
      
  
    
      
        1 
         
     
    {\displaystyle 1\,} 
      
  
    
      
        
          { 
          
            
              
                
                  4 
                 
               
              
                
                  1 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}4\\1\end{matrix}}\right\}=1\,} 
      
  
    
      
        4 
         
     
    {\displaystyle 4\,} 
      
  
    
      
        
          { 
          
            
              
                
                  4 
                 
               
              
                
                  4 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}4\\4\end{matrix}}\right\}=1\,} 
      
  
    
      
        2 
         
     
    {\displaystyle 2\,} 
      
{甲, 乙}{丙, 丁} 
{甲, 丙}{乙,丁} 
{甲, 丁}{乙, 丙} 
{甲}{乙, 丙, 丁} 
{乙}{甲, 丙, 丁} 
{丙}{甲, 乙, 丁} 
{丁}{甲, 乙, 丙} 因此
  
    
      
        
          { 
          
            
              
                
                  4 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        = 
        7 
         
     
    {\displaystyle \left\{{\begin{matrix}4\\2\end{matrix}}\right\}=7\,} 
      
  
    
      
        
          { 
          
            
              
                
                  4 
                 
               
              
                
                  3 
                 
               
             
           
          } 
         
        = 
        6 
         
     
    {\displaystyle \left\{{\begin{matrix}4\\3\end{matrix}}\right\}=6\,} 
      
递推关系式 第二类斯特林数有与第一类斯特林数类似的递推关系式:
  
    
      
        
          { 
          
            
              
                
                  n 
                  + 
                  1 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
        = 
        k 
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
        + 
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                  − 
                  1 
                 
               
             
           
          } 
         
         
     
    {\displaystyle \left\{{\begin{matrix}n+1\\k\end{matrix}}\right\}=k\left\{{\begin{matrix}n\\k\end{matrix}}\right\}+\left\{{\begin{matrix}n\\k-1\end{matrix}}\right\}\,} 
      其中,
  
    
      
        k 
        > 
        0 
       
     
    {\displaystyle k>0} 
      
  
    
      
        
          { 
          
            
              
                
                  0 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}0\\0\end{matrix}}\right\}=1\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        = 
        
          { 
          
            
              
                
                  0 
                 
               
              
                
                  n 
                 
               
             
           
          } 
         
        = 
        0 
         
     
    {\displaystyle \left\{{\begin{matrix}n\\0\end{matrix}}\right\}=\left\{{\begin{matrix}0\\n\end{matrix}}\right\}=0\,} 
      
  
    
      
        n 
        > 
        0 
       
     
    {\displaystyle n>0} 
      
第二类斯特林数表 下面为部分第二类斯特林数:
 k 
n 
0 
1 
2 
3 
4 
5 
6
 0
 
1 
 1
 
0 
1 
 2
 
0 
1 
1 
 3
 
0 
1 
3 
1 
 4
 
0 
1 
7 
6 
1 
 5
 
0 
1 
15 
25 
10 
1 
 6
 
0 
1 
31 
90 
65 
15 
1
 
简单性质 观察前面的“第二类斯特林数表”,我们可以得到一些简单的性质:
  
    
      
        
          { 
          
            
              
                
                  0 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}0\\0\end{matrix}}\right\}=1\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  0 
                 
               
             
           
          } 
         
        = 
        0 
         
     
    {\displaystyle \left\{{\begin{matrix}n\\0\end{matrix}}\right\}=0\,} 
      
  
    
      
        n 
        > 
        0 
         
     
    {\displaystyle n>0\,} 
      如果
  
    
      
        k 
        > 
        0 
         
     
    {\displaystyle k>0\,} 
      
  
    
      
        
          { 
          
            
              
                
                  0 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
        = 
        0 
         
     
    {\displaystyle \left\{{\begin{matrix}0\\k\end{matrix}}\right\}=0\,} 
      或更一般地,如果
  
    
      
        k 
        > 
        n 
         
     
    {\displaystyle k>n\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
        = 
        0 
         
     
    {\displaystyle \left\{{\begin{matrix}n\\k\end{matrix}}\right\}=0\,} 
      还有
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  1 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}n\\1\end{matrix}}\right\}=1\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        = 
        
          2 
          
            n 
            − 
            1 
           
         
        − 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}n\\2\end{matrix}}\right\}=2^{n-1}-1\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  3 
                 
               
             
           
          } 
         
        = 
        
          
            1 
            2 
           
         
        ( 
        
          3 
          
            n 
            − 
            1 
           
         
        + 
        1 
        ) 
        − 
        
          2 
          
            n 
            − 
            1 
           
         
         
     
    {\displaystyle \left\{{\begin{matrix}n\\3\end{matrix}}\right\}={\frac {1}{2}}(3^{n-1}+1)-2^{n-1}\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  n 
                 
               
             
           
          } 
         
        = 
        1 
         
     
    {\displaystyle \left\{{\begin{matrix}n\\n\end{matrix}}\right\}=1\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  n 
                  − 
                  1 
                 
               
             
           
          } 
         
        = 
        
          
            
              ( 
             
            
              n 
              2 
             
            
              ) 
             
           
         
         
     
    {\displaystyle \left\{{\begin{matrix}n\\n-1\end{matrix}}\right\}={n \choose 2}\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  n 
                  − 
                  2 
                 
               
             
           
          } 
         
        = 
        
          
            
              ( 
             
            
              n 
              3 
             
            
              ) 
             
           
         
        + 
        3 
        
          
            
              ( 
             
            
              n 
              4 
             
            
              ) 
             
           
         
         
     
    {\displaystyle \left\{{\begin{matrix}n\\n-2\end{matrix}}\right\}={n \choose 3}+3{n \choose 4}\,} 
      
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  n 
                  − 
                  3 
                 
               
             
           
          } 
         
        = 
        
          
            
              ( 
             
            
              n 
              4 
             
            
              ) 
             
           
         
        + 
        10 
        
          
            
              ( 
             
            
              n 
              5 
             
            
              ) 
             
           
         
        + 
        15 
        
          
            
              ( 
             
            
              n 
              6 
             
            
              ) 
             
           
         
         
     
    {\displaystyle \left\{{\begin{matrix}n\\n-3\end{matrix}}\right\}={n \choose 4}+10{n \choose 5}+15{n \choose 6}\,} 
      其他性质 贝尔数 和第二类斯特林数有如下关系:
  
    
      
        
          B 
          
            n 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
         
     
    {\displaystyle B_{n}=\sum _{k=0}^{n}\left\{{\begin{matrix}n\\k\end{matrix}}\right\}\,} 
       两类之间的关系 
第一类和第二类斯特林数可以看作互为逆矩阵 的关系:
  
    
      
        
          
            ∑ 
            
              j 
              ≥ 
              0 
             
           
          s 
          ( 
          n 
          , 
          j 
          ) 
          S 
          ( 
          j 
          , 
          k 
          ) 
          = 
          
            ∑ 
            
              j 
              ≥ 
              0 
             
           
          ( 
          − 
          1 
          
            ) 
            
              n 
              − 
              j 
             
           
          
            
              [ 
              
                
                  
                    n 
                   
                 
                
                  
                    j 
                   
                 
               
              ] 
             
           
          
            
              { 
              
                
                  
                    j 
                   
                 
                
                  
                    k 
                   
                 
               
              } 
             
           
          = 
          
            δ 
            
              n 
              k 
             
           
         
       
      
        
          
            ∑ 
            
              j 
              ≥ 
              0 
             
           
          s 
          ( 
          n 
          , 
          j 
          ) 
          S 
          ( 
          j 
          , 
          k 
          ) 
          = 
          
            ∑ 
            
              j 
              ≥ 
              0 
             
           
          ( 
          − 
          1 
          
            ) 
            
              n 
              − 
              j 
             
           
          
            
              [ 
              
                
                  
                    n 
                   
                 
                
                  
                    j 
                   
                 
               
              ] 
             
           
          
            
              { 
              
                
                  
                    j 
                   
                 
                
                  
                    k 
                   
                 
               
              } 
             
           
          = 
          
            δ 
            
              n 
              k 
             
           
           
       
     
    {\displaystyle \sum _{j\geq 0}s(n,j)S(j,k)=\sum _{j\geq 0}(-1)^{n-j}{\begin{bmatrix}n\\j\end{bmatrix}}{\begin{Bmatrix}j\\k\end{Bmatrix}}=\delta _{nk}}{\displaystyle \sum _{j\geq 0}s(n,j)S(j,k)=\sum _{j\geq 0}(-1)^{n-j}{\begin{bmatrix}n\\j\end{bmatrix}}{\begin{Bmatrix}j\\k\end{Bmatrix}}=\delta _{nk}\,} 
      以及
  
    
      
        
          
            ∑ 
            
              j 
              ≥ 
              0 
             
           
          S 
          ( 
          n 
          , 
          j 
          ) 
          s 
          ( 
          j 
          , 
          k 
          ) 
          = 
          
            ∑ 
            
              j 
              ≥ 
              0 
             
           
          ( 
          − 
          1 
          
            ) 
            
              j 
              − 
              k 
             
           
          
            
              { 
              
                
                  
                    n 
                   
                 
                
                  
                    j 
                   
                 
               
              } 
             
           
          
            
              [ 
              
                
                  
                    j 
                   
                 
                
                  
                    k 
                   
                 
               
              ] 
             
           
          = 
          
            δ 
            
              n 
              k 
             
           
         
       
      
        
          
            ∑ 
            
              j 
              ≥ 
              0 
             
           
          S 
          ( 
          n 
          , 
          j 
          ) 
          s 
          ( 
          j 
          , 
          k 
          ) 
          = 
          
            ∑ 
            
              j 
              ≥ 
              0 
             
           
          ( 
          − 
          1 
          
            ) 
            
              j 
              − 
              k 
             
           
          
            
              { 
              
                
                  
                    n 
                   
                 
                
                  
                    j 
                   
                 
               
              } 
             
           
          
            
              [ 
              
                
                  
                    j 
                   
                 
                
                  
                    k 
                   
                 
               
              ] 
             
           
          = 
          
            δ 
            
              n 
              k 
             
           
           
       
     
    {\displaystyle \sum _{j\geq 0}S(n,j)s(j,k)=\sum _{j\geq 0}(-1)^{j-k}{\begin{Bmatrix}n\\j\end{Bmatrix}}{\begin{bmatrix}j\\k\end{bmatrix}}=\delta _{nk}}{\displaystyle \sum _{j\geq 0}S(n,j)s(j,k)=\sum _{j\geq 0}(-1)^{j-k}{\begin{Bmatrix}n\\j\end{Bmatrix}}{\begin{bmatrix}j\\k\end{bmatrix}}=\delta _{nk}\,} 
      其中,
  
    
      
        
          δ 
          
            n 
            k 
           
         
         
     
    {\displaystyle \delta _{nk}\,} 
      克罗内克尔δ 。
 拉赫数 
定义 拉赫数 伊沃·拉赫 [7] [8] 第三类斯特林数 。可以用递进阶乘和递降阶乘 定义为
  
    
      
        
          x 
          
            ( 
            n 
            ) 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        L 
        ( 
        n 
        , 
        k 
        ) 
        ( 
        x 
        
          ) 
          
            k 
           
         
         
     
    {\displaystyle x^{(n)}=\sum _{k=0}^{n}L(n,k)(x)_{k}\,} 
      或
  
    
      
        ( 
        x 
        
          ) 
          
            n 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        ( 
        − 
        1 
        
          ) 
          
            n 
            − 
            k 
           
         
        L 
        ( 
        n 
        , 
        k 
        ) 
        
          x 
          
            ( 
            k 
            ) 
           
         
         
     
    {\displaystyle (x)_{n}=\sum _{k=0}^{n}(-1)^{n-k}L(n,k)x^{(k)}\,} 
      其中, 
  
    
      
        L 
        ( 
        n 
        , 
        k 
        ) 
         
     
    {\displaystyle L(n,k)\,} 
      
  
    
      
        
          x 
          
            ( 
            3 
            ) 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            3 
           
         
        L 
        ( 
        3 
        , 
        k 
        ) 
        ( 
        x 
        
          ) 
          
            k 
           
         
         
     
    {\displaystyle x^{(3)}=\sum _{k=0}^{3}L(3,k)(x)_{k}\,} 
      即
  
    
      
        x 
        ( 
        x 
        + 
        1 
        ) 
        ( 
        x 
        + 
        2 
        ) 
        = 
        L 
        ( 
        3 
        , 
        0 
        ) 
        ⋅ 
        1 
        + 
        L 
        ( 
        3 
        , 
        1 
        ) 
        ⋅ 
        x 
        + 
        L 
        ( 
        3 
        , 
        2 
        ) 
        ⋅ 
        x 
        ( 
        x 
        − 
        1 
        ) 
        + 
        L 
        ( 
        3 
        , 
        3 
        ) 
        ⋅ 
        x 
        ( 
        x 
        − 
        1 
        ) 
        ( 
        x 
        − 
        2 
        ) 
         
     
    {\displaystyle x(x+1)(x+2)=L(3,0)\cdot 1+L(3,1)\cdot x+L(3,2)\cdot x(x-1)+L(3,3)\cdot x(x-1)(x-2)\,} 
      等式两边展开并合并同类项,得
  
    
      
        0 
        ⋅ 
        
          x 
          
            0 
           
         
        + 
        2 
        ⋅ 
        x 
        + 
        3 
        ⋅ 
        
          x 
          
            2 
           
         
        + 
        1 
        ⋅ 
        
          x 
          
            3 
           
         
        = 
        L 
        ( 
        3 
        , 
        0 
        ) 
        + 
        [ 
        L 
        ( 
        3 
        , 
        1 
        ) 
        − 
        L 
        ( 
        3 
        , 
        2 
        ) 
        + 
        2 
        L 
        ( 
        3 
        , 
        3 
        ) 
        ] 
        ⋅ 
        x 
        + 
        [ 
        L 
        ( 
        3 
        , 
        2 
        ) 
        − 
        3 
        L 
        ( 
        3 
        , 
        3 
        ) 
        ] 
        ⋅ 
        
          x 
          
            2 
           
         
        + 
        L 
        ( 
        3 
        , 
        3 
        ) 
        ⋅ 
        
          x 
          
            3 
           
         
         
     
    {\displaystyle 0\cdot x^{0}+2\cdot x+3\cdot x^{2}+1\cdot x^{3}=L(3,0)+[L(3,1)-L(3,2)+2L(3,3)]\cdot x+[L(3,2)-3L(3,3)]\cdot x^{2}+L(3,3)\cdot x^{3}\,} 
      比较等式两边系数,得
  
    
      
        
          
            { 
            
              
                
                  
                    L 
                    ( 
                    3 
                    , 
                    0 
                    ) 
                    = 
                    0 
                   
                 
               
              
                
                  
                    L 
                    ( 
                    3 
                    , 
                    1 
                    ) 
                    − 
                    L 
                    ( 
                    3 
                    , 
                    2 
                    ) 
                    + 
                    2 
                    L 
                    ( 
                    3 
                    , 
                    3 
                    ) 
                    = 
                    2 
                   
                 
               
              
                
                  
                    L 
                    ( 
                    3 
                    , 
                    2 
                    ) 
                    − 
                    3 
                    L 
                    ( 
                    3 
                    , 
                    3 
                    ) 
                    = 
                    3 
                   
                 
               
              
                
                  
                    L 
                    ( 
                    3 
                    , 
                    3 
                    ) 
                    = 
                    1 
                   
                 
               
             
             
         
         
     
    {\displaystyle {\begin{cases}{L(3,0)=0}\\{L(3,1)-L(3,2)+2L(3,3)=2}\\{L(3,2)-3L(3,3)=3}\\{L(3,3)=1}\end{cases}}\,} 
      解得
  
    
      
        L 
        ( 
        3 
        , 
        0 
        ) 
        = 
        0 
         
     
    {\displaystyle L(3,0)=0\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        1 
        ) 
        = 
        6 
         
     
    {\displaystyle L(3,1)=6\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        2 
        ) 
        = 
        6 
         
     
    {\displaystyle L(3,2)=6\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        3 
        ) 
        = 
        1 
         
     
    {\displaystyle L(3,3)=1\,} 
      
或
  
    
      
        ( 
        x 
        
          ) 
          
            3 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            3 
           
         
        ( 
        − 
        1 
        
          ) 
          
            3 
            − 
            k 
           
         
        L 
        ( 
        3 
        , 
        k 
        ) 
        
          x 
          
            ( 
            3 
            ) 
           
         
         
     
    {\displaystyle (x)_{3}=\sum _{k=0}^{3}(-1)^{3-k}L(3,k)x^{(3)}\,} 
      即
  
    
      
        x 
        ( 
        x 
        − 
        1 
        ) 
        ( 
        x 
        − 
        2 
        ) 
        = 
        L 
        ( 
        3 
        , 
        0 
        ) 
        ⋅ 
        1 
        + 
        L 
        ( 
        3 
        , 
        1 
        ) 
        ⋅ 
        x 
        + 
        L 
        ( 
        3 
        , 
        2 
        ) 
        ⋅ 
        x 
        ( 
        x 
        + 
        1 
        ) 
        + 
        L 
        ( 
        3 
        , 
        3 
        ) 
        ⋅ 
        x 
        ( 
        x 
        + 
        1 
        ) 
        ( 
        x 
        + 
        2 
        ) 
         
     
    {\displaystyle x(x-1)(x-2)=L(3,0)\cdot 1+L(3,1)\cdot x+L(3,2)\cdot x(x+1)+L(3,3)\cdot x(x+1)(x+2)\,} 
      等式两边展开并合并同类项,得
  
    
      
        0 
        ⋅ 
        
          x 
          
            0 
           
         
        + 
        2 
        ⋅ 
        x 
        − 
        3 
        ⋅ 
        
          x 
          
            2 
           
         
        + 
        1 
        ⋅ 
        
          x 
          
            3 
           
         
        = 
        − 
        L 
        ( 
        3 
        , 
        0 
        ) 
        + 
        [ 
        L 
        ( 
        3 
        , 
        1 
        ) 
        − 
        L 
        ( 
        3 
        , 
        2 
        ) 
        + 
        2 
        L 
        ( 
        3 
        , 
        3 
        ) 
        ] 
        ⋅ 
        x 
        + 
        [ 
        − 
        L 
        ( 
        3 
        , 
        2 
        ) 
        + 
        3 
        L 
        ( 
        3 
        , 
        3 
        ) 
        ] 
        ⋅ 
        
          x 
          
            2 
           
         
        + 
        L 
        ( 
        3 
        , 
        3 
        ) 
        ⋅ 
        
          x 
          
            3 
           
         
         
     
    {\displaystyle 0\cdot x^{0}+2\cdot x-3\cdot x^{2}+1\cdot x^{3}=-L(3,0)+[L(3,1)-L(3,2)+2L(3,3)]\cdot x+[-L(3,2)+3L(3,3)]\cdot x^{2}+L(3,3)\cdot x^{3}\,} 
      比较等式两边系数,得
  
    
      
        
          
            { 
            
              
                
                  
                    L 
                    ( 
                    3 
                    , 
                    0 
                    ) 
                    = 
                    0 
                   
                 
               
              
                
                  
                    L 
                    ( 
                    3 
                    , 
                    1 
                    ) 
                    − 
                    L 
                    ( 
                    3 
                    , 
                    2 
                    ) 
                    + 
                    2 
                    L 
                    ( 
                    3 
                    , 
                    3 
                    ) 
                    = 
                    2 
                   
                 
               
              
                
                  
                    − 
                    L 
                    ( 
                    3 
                    , 
                    2 
                    ) 
                    + 
                    3 
                    L 
                    ( 
                    3 
                    , 
                    3 
                    ) 
                    = 
                    − 
                    3 
                   
                 
               
              
                
                  
                    L 
                    ( 
                    3 
                    , 
                    3 
                    ) 
                    = 
                    1 
                   
                 
               
             
             
         
         
     
    {\displaystyle {\begin{cases}{L(3,0)=0}\\{L(3,1)-L(3,2)+2L(3,3)=2}\\{-L(3,2)+3L(3,3)=-3}\\{L(3,3)=1}\end{cases}}\,} 
      解得
  
    
      
        L 
        ( 
        3 
        , 
        0 
        ) 
        = 
        0 
         
     
    {\displaystyle L(3,0)=0\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        1 
        ) 
        = 
        6 
         
     
    {\displaystyle L(3,1)=6\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        2 
        ) 
        = 
        6 
         
     
    {\displaystyle L(3,2)=6\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        3 
        ) 
        = 
        1 
         
     
    {\displaystyle L(3,3)=1\,} 
      
以上定义的拉赫数是无符号拉赫数(英语: signed Lah numbers),有符号拉赫数(英语:signed Lah numbers)的定义如下:
  
    
      
        
          x 
          
            ( 
            n 
            ) 
           
         
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        L 
        ( 
        n 
        , 
        k 
        ) 
        ( 
        x 
        
          ) 
          
            k 
           
         
         
     
    {\displaystyle x^{(n)}=(-1)^{n}\sum _{k=0}^{n}L(n,k)(x)_{k}\,} 
      或
  
    
      
        ( 
        x 
        
          ) 
          
            n 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        L 
        ( 
        n 
        , 
        k 
        ) 
        
          x 
          
            ( 
            k 
            ) 
           
         
         
     
    {\displaystyle (x)_{n}=\sum _{k=0}^{n}(-1)^{k}L(n,k)x^{(k)}\,} 
      无符号拉赫数计算的是将含有
  
    
      
        n 
         
     
    {\displaystyle n\,} 
      
  
    
      
        k 
         
     
    {\displaystyle k\,} 
      [9] 
  
    
      
        
          { 
          
            1 
            , 
            2 
            , 
            3 
           
          } 
         
         
     
    {\displaystyle \left\{1,2,3\right\}\,} 
      
  
    
      
        0 
         
     
    {\displaystyle 0\,} 
      
  
    
      
        1 
         
     
    {\displaystyle 1\,} 
      
  
    
      
        
          { 
          
            ( 
            1 
            , 
            2 
            , 
            3 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(1,2,3)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            1 
            , 
            3 
            , 
            2 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(1,3,2)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            2 
            , 
            1 
            , 
            3 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(2,1,3)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            2 
            , 
            3 
            , 
            1 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(2,3,1)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            3 
            , 
            1 
            , 
            2 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(3,1,2)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            3 
            , 
            2 
            , 
            1 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(3,2,1)\right\}\,} 
      
  
    
      
        2 
         
     
    {\displaystyle 2\,} 
      
  
    
      
        
          { 
          
            ( 
            1 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(1)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            2 
            , 
            3 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(2,3)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            1 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(1)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            3 
            , 
            2 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(3,2)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            2 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(2)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            1 
            , 
            3 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(1,3)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            2 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(2)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            3 
            , 
            1 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(3,1)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            3 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(3)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            1 
            , 
            2 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(1,2)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            3 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(3)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            2 
            , 
            1 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(2,1)\right\}\,} 
      
  
    
      
        3 
         
     
    {\displaystyle 3\,} 
      
  
    
      
        
          { 
          
            ( 
            1 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(1)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            2 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(2)\right\}\,} 
      
  
    
      
        
          { 
          
            ( 
            3 
            ) 
           
          } 
         
         
     
    {\displaystyle \left\{(3)\right\}\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        0 
        ) 
        = 
        0 
         
     
    {\displaystyle L(3,0)=0\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        1 
        ) 
        = 
        6 
         
     
    {\displaystyle L(3,1)=6\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        2 
        ) 
        = 
        6 
         
     
    {\displaystyle L(3,2)=6\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        3 
        ) 
        = 
        1 
         
     
    {\displaystyle L(3,3)=1\,} 
      
无符号拉赫数可以使用以下公式进行计算:
  
    
      
        L 
        ( 
        n 
        , 
        k 
        ) 
        = 
        
          
            
              ( 
             
            
              
                n 
                − 
                1 
               
              
                k 
                − 
                1 
               
             
            
              ) 
             
           
         
        
          
            
              n 
              ! 
             
            
              k 
              ! 
             
           
         
         
     
    {\displaystyle L(n,k)={n-1 \choose k-1}{\frac {n!}{k!}}\,} 
      有符号拉赫数可以使用以下公式进行计算:
  
    
      
        
          L 
          ′ 
         
        ( 
        n 
        , 
        k 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          
            
              ( 
             
            
              
                n 
                − 
                1 
               
              
                k 
                − 
                1 
               
             
            
              ) 
             
           
         
        
          
            
              n 
              ! 
             
            
              k 
              ! 
             
           
         
         
     
    {\displaystyle L'(n,k)=(-1)^{n}{n-1 \choose k-1}{\frac {n!}{k!}}\,} 
      拓展示例 递推关系式 无符号拉赫数有如下递推关系:
  
    
      
        L 
        ( 
        n 
        , 
        k 
        + 
        1 
        ) 
        = 
        
          
            
              n 
              − 
              k 
             
            
              k 
              ( 
              k 
              + 
              1 
              ) 
             
           
         
        L 
        ( 
        n 
        , 
        k 
        ) 
       
     
    {\displaystyle L(n,k+1)={\frac {n-k}{k(k+1)}}L(n,k)} 
      或
  
    
      
        L 
        ( 
        n 
        + 
        1 
        , 
        k 
        ) 
        = 
        ( 
        n 
        + 
        k 
        ) 
        L 
        ( 
        n 
        , 
        k 
        ) 
        + 
        L 
        ( 
        n 
        , 
        k 
        − 
        1 
        ) 
         
     
    {\displaystyle L(n+1,k)=(n+k)L(n,k)+L(n,k-1)\,} 
      其中,
  
    
      
        L 
        ( 
        n 
        , 
        0 
        ) 
        = 
        0 
         
     
    {\displaystyle L(n,0)=0\,} 
      
  
    
      
        L 
        ( 
        n 
        , 
        0 
        ) 
        = 
        0 
         
     
    {\displaystyle L(n,0)=0\,} 
      
  
    
      
        L 
        ( 
        n 
        , 
        k 
        ) 
        = 
        0 
         
     
    {\displaystyle L(n,k)=0\,} 
      
  
    
      
        k 
        > 
        n 
         
     
    {\displaystyle k>n\,} 
      
  
    
      
        L 
        ( 
        1 
        , 
        1 
        ) 
        = 
        1 
         
     
    {\displaystyle L(1,1)=1\,} 
      
拉赫数表 下面为部分无符号拉赫数:
 k 
n 
0 
1 
2 
3 
4 
5 
6
 0
 
1 
 1
 
0 
1 
 2
 
0 
2 
1 
 3
 
0 
6 
6 
1 
 4
 
0 
24 
36 
12 
1 
 5
 
0 
120 
240 
120 
20 
1 
 6
 
0 
720 
1800 
1200 
300 
30 
1
 
简单性质 观察前面的“拉赫数表”,我们可以得到一些简单性质:
  
    
      
        L 
        ( 
        0 
        , 
        0 
        ) 
        = 
        1 
       
     
    {\displaystyle L(0,0)=1} 
      
  
    
      
        L 
        ( 
        n 
        , 
        0 
        ) 
        = 
        0 
       
     
    {\displaystyle L(n,0)=0} 
      
  
    
      
        n 
        > 
        0 
       
     
    {\displaystyle n>0} 
      
如果
  
    
      
        k 
        > 
        n 
       
     
    {\displaystyle k>n} 
      
  
    
      
        L 
        ( 
        0 
        , 
        0 
        ) 
        = 
        1 
       
     
    {\displaystyle L(0,0)=1} 
      
  
    
      
        L 
        ( 
        n 
        , 
        k 
        ) 
        = 
        0 
       
     
    {\displaystyle L(n,k)=0} 
      
还有
  
    
      
        L 
        ( 
        n 
        , 
        1 
        ) 
        = 
        n 
        ! 
       
     
    {\displaystyle L(n,1)=n!} 
      
  
    
      
        L 
        ( 
        n 
        , 
        2 
        ) 
        = 
        
          
            
              ( 
              n 
              − 
              1 
              ) 
              n 
              ! 
             
            2 
           
         
       
     
    {\displaystyle L(n,2)={\frac {(n-1)n!}{2}}} 
      
  
    
      
        L 
        ( 
        n 
        , 
        3 
        ) 
        = 
        
          
            
              ( 
              n 
              − 
              2 
              ) 
              ( 
              n 
              − 
              1 
              ) 
              n 
              ! 
             
            12 
           
         
       
     
    {\displaystyle L(n,3)={\frac {(n-2)(n-1)n!}{12}}} 
      
  
    
      
        L 
        ( 
        n 
        , 
        n 
        − 
        1 
        ) 
        = 
        n 
        ( 
        n 
        − 
        1 
        ) 
       
     
    {\displaystyle L(n,n-1)=n(n-1)} 
      
  
    
      
        L 
        ( 
        n 
        , 
        n 
        ) 
        = 
        1 
       
     
    {\displaystyle L(n,n)=1} 
      
  
    
      
        
          ∑ 
          
            n 
            ≥ 
            k 
           
         
        L 
        ( 
        n 
        , 
        k 
        ) 
        
          
            
              x 
              
                n 
               
             
            
              n 
              ! 
             
           
         
        = 
        
          
            1 
            
              k 
              ! 
             
           
         
        
          
            ( 
            
              
                x 
                
                  1 
                  − 
                  x 
                 
               
             
            ) 
           
          
            k 
           
         
       
     
    {\displaystyle \sum _{n\geq k}L(n,k){\frac {x^{n}}{n!}}={\frac {1}{k!}}\left({\frac {x}{1-x}}\right)^{k}} 
      其他性质 无符号拉赫数计算公式可以作进一步拓展:
  
    
      
        L 
        ( 
        n 
        , 
        k 
        ) 
        = 
        
          
            
              ( 
             
            
              
                n 
                − 
                1 
               
              
                k 
                − 
                1 
               
             
            
              ) 
             
           
         
        
          
            
              n 
              ! 
             
            
              k 
              ! 
             
           
         
        = 
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        
          
            
              ( 
              n 
              − 
              1 
              ) 
              ! 
             
            
              ( 
              k 
              − 
              1 
              ) 
              ! 
             
           
         
        = 
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        
          
            
              ( 
             
            
              
                n 
                − 
                1 
               
              
                k 
                − 
                1 
               
             
            
              ) 
             
           
         
        ( 
        n 
        − 
        k 
        ) 
        ! 
       
     
    {\displaystyle L(n,k)={n-1 \choose k-1}{\frac {n!}{k!}}={n \choose k}{\frac {(n-1)!}{(k-1)!}}={n \choose k}{n-1 \choose k-1}(n-k)!} 
      
  
    
      
        L 
        ( 
        n 
        , 
        k 
        ) 
        = 
        
          
            
              n 
              ! 
              ( 
              n 
              − 
              1 
              ) 
              ! 
             
            
              k 
              ! 
              ( 
              k 
              − 
              1 
              ) 
              ! 
             
           
         
        ⋅ 
        
          
            1 
            
              ( 
              n 
              − 
              k 
              ) 
              ! 
             
           
         
        = 
        
          
            ( 
            
              
                
                  n 
                  ! 
                 
                
                  k 
                  ! 
                 
               
             
            ) 
           
          
            2 
           
         
        
          
            k 
            
              n 
              ( 
              n 
              − 
              k 
              ) 
              ! 
             
           
         
       
     
    {\displaystyle L(n,k)={\frac {n!(n-1)!}{k!(k-1)!}}\cdot {\frac {1}{(n-k)!}}=\left({\frac {n!}{k!}}\right)^{2}{\frac {k}{n(n-k)!}}} 
      无符号拉赫数与两类斯特林数都有关系[10] 
  
    
      
        L 
        ( 
        n 
        , 
        k 
        ) 
        = 
        
          ∑ 
          
            j 
            = 
            0 
           
          
            n 
           
         
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  j 
                 
               
             
           
          ] 
         
        
          { 
          
            
              
                
                  j 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
         
     
    {\displaystyle L(n,k)=\sum _{j=0}^{n}\left[{\begin{matrix}n\\j\end{matrix}}\right]\left\{{\begin{matrix}j\\k\end{matrix}}\right\}\,} 
      取
  
    
      
        L 
        ( 
        3 
        , 
        2 
        ) 
         
     
    {\displaystyle L(3,2)\,} 
      
  
    
      
        L 
        ( 
        3 
        , 
        2 
        ) 
        = 
        
          ∑ 
          
            j 
            = 
            0 
           
          
            3 
           
         
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  j 
                 
               
             
           
          ] 
         
        
          { 
          
            
              
                
                  j 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
         
     
    {\displaystyle L(3,2)=\sum _{j=0}^{3}\left[{\begin{matrix}3\\j\end{matrix}}\right]\left\{{\begin{matrix}j\\2\end{matrix}}\right\}\,} 
      即
  
    
      
        L 
        ( 
        3 
        , 
        2 
        ) 
        = 
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  0 
                 
               
             
           
          ] 
         
        
          { 
          
            
              
                
                  0 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        + 
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  1 
                 
               
             
           
          ] 
         
        
          { 
          
            
              
                
                  1 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        + 
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          ] 
         
        
          { 
          
            
              
                
                  2 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        + 
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  3 
                 
               
             
           
          ] 
         
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
         
     
    {\displaystyle L(3,2)=\left[{\begin{matrix}3\\0\end{matrix}}\right]\left\{{\begin{matrix}0\\2\end{matrix}}\right\}+\left[{\begin{matrix}3\\1\end{matrix}}\right]\left\{{\begin{matrix}1\\2\end{matrix}}\right\}+\left[{\begin{matrix}3\\2\end{matrix}}\right]\left\{{\begin{matrix}2\\2\end{matrix}}\right\}+\left[{\begin{matrix}3\\3\end{matrix}}\right]\left\{{\begin{matrix}3\\2\end{matrix}}\right\}\,} 
      于是
  
    
      
        L 
        ( 
        3 
        , 
        2 
        ) 
        = 
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          ] 
         
        
          { 
          
            
              
                
                  2 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        + 
        
          [ 
          
            
              
                
                  3 
                 
               
              
                
                  3 
                 
               
             
           
          ] 
         
        
          { 
          
            
              
                
                  3 
                 
               
              
                
                  2 
                 
               
             
           
          } 
         
        = 
        3 
        × 
        1 
        + 
        1 
        × 
        3 
        = 
        6 
         
     
    {\displaystyle L(3,2)=\left[{\begin{matrix}3\\2\end{matrix}}\right]\left\{{\begin{matrix}2\\2\end{matrix}}\right\}+\left[{\begin{matrix}3\\3\end{matrix}}\right]\left\{{\begin{matrix}3\\2\end{matrix}}\right\}=3\times 1+1\times 3=6\,} 
      由无符号拉赫数与两类斯特林数之间的关系,考虑到两类斯特林数之间的关系,有
  
    
      
        
          ∑ 
          
            j 
            ≥ 
            0 
           
         
        L 
        ( 
        n 
        , 
        j 
        ) 
        L 
        ( 
        j 
        , 
        k 
        ) 
        = 
        
          δ 
          
            n 
            k 
           
         
         
     
    {\displaystyle \sum _{j\geq 0}L(n,j)L(j,k)=\delta _{nk}\,} 
      其中,
  
    
      
        
          δ 
          
            n 
            k 
           
         
         
     
    {\displaystyle \delta _{nk}\,} 
      克罗内克尔δ 。
 三类之间的关系 
三类斯特林数以及乘方、阶乘之间的关系可以用下图表示:
   参考资料 
^ Sándor, Jozsef; Crstici, Borislav. Handbook of Number Theory II. Kluwer Academic Publishers. 2004: 464. ISBN  9781402025464   ^ Transformation of Series by a Variant of Stirling's Numbers. Imanuel Marx, The American Mathematical Monthly 69, #6 (June–July 1962). : 530–532,. JSTOR 2311194.    ^ Antonio Salmeri (编). Introduzione alla teoria dei coefficienti fattoriali, Giornale di Matematiche di Battaglini 90 (1962). : pp. 44–54.   ^ Knuth, D.E. (1992) (编). "Two notes on notation", Amer. Math. Monthly, 99. : 403-422. JSTOR 2325085 arXiv:math/9205211   doi:10.2307/2325085    ^ Brualdi,R.A. (编). 组合数学(原书第5版). 由冯速等人翻译. 北京: 机械工业出版社. 2012.4: 176页. ISBN  978-7-111-37787-0   ^ Weisstein, Eric W.  (编). " Stirling Number of the Second Kind" MathWorld Wolfram Research, Inc.    [2019-06-06 ] . (原始内容存档 于2019-06-06) (英语) .  ^ Lah, Ivo. A new kind of numbers and its application in the actuarial mathematics 9 . 1954: 7–15.   ^ John Riordan, Introduction to Combinatorial Analysis   (页面存档备份 ,存于互联网档案馆 ), Princeton University Press (1958, reissue 1980) ISBN  978-0-691-02365-6  (reprinted again in 2002 by Dover Publications).^ Petkovsek, Marko; Pisanski, Tomaz. Combinatorial Interpretation of Unsigned Stirling and Lah Numbers 12 . Fall 2007: 417–424. JSTOR 24340704    ^ Comtet, Louis. Advanced Combinatorics . Dordrecht, Holland: Reidel. 1974: 156 .