定义 
连续剪切小波系统 抛物线缩放和剪切的几何效果,使用一些不同参数a和 s.
连续剪切小波系统的架构是基于抛物线缩放矩阵 
  
    
      
        
          A 
          
            a 
           
         
        = 
        
          
            [ 
            
              
                
                  a 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  
                    a 
                    
                      1 
                      
                        / 
                       
                      2 
                     
                   
                 
               
             
            ] 
           
         
        , 
        a 
        > 
        0 
       
     
    {\displaystyle A_{a}={\begin{bmatrix}a&0\\0&a^{1/2}\end{bmatrix}},\quad a>0} 
      为一个改变分辨率的方法。剪切矩阵 
  
    
      
        
          S 
          
            s 
           
         
        = 
        
          
            [ 
            
              
                
                  1 
                 
                
                  s 
                 
               
              
                
                  0 
                 
                
                  1 
                 
               
             
            ] 
           
         
        , 
        s 
        ∈ 
        
          R 
         
       
     
    {\displaystyle S_{s}={\begin{bmatrix}1&s\\0&1\end{bmatrix}},\quad s\in \mathbb {R} } 
      为一个改变方向的方法。最后再用平移去改变位置。相较于曲波变换,剪切小波利用剪切的方法取代旋转的方法,其优点在于如果
  
    
      
        s 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle s\in \mathbb {Z} } 
      
  
    
      
        
          S 
          
            s 
           
         
       
     
    {\displaystyle S_{s}} 
      
  
    
      
        s 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle s\in \mathbb {Z} } 
      
  
    
      
        
          x 
         
        = 
        
          
            [ 
            
              
                
                  x 
                 
               
              
                
                  y 
                 
               
             
            ] 
           
         
        , 
        x 
        , 
        y 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle \mathbf {x} ={\begin{bmatrix}x\\y\end{bmatrix}},x,y\in \mathbb {Z} } 
      
  
    
      
        
          S 
          
            s 
           
         
        
          x 
         
        = 
        
          
            [ 
            
              
                
                  x 
                  − 
                  s 
                  y 
                 
               
              
                
                  y 
                 
               
             
            ] 
           
         
        ∈ 
        
          
            Z 
           
          
            2 
           
         
       
     
    {\displaystyle S_{s}\mathbf {x} ={\begin{bmatrix}x-sy\\y\end{bmatrix}}\in \mathbb {Z} ^{2}} 
      
结果依然在整数采样点上。[5] 
给定一个
  
    
      
        ψ 
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} 
      
  
    
      
        ψ 
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} 
      
  
    
      
        
          SH 
          
            
              c 
              o 
              n 
              t 
             
           
         
         
        ( 
        ψ 
        ) 
        = 
        { 
        
          ψ 
          
            a 
            , 
            s 
            , 
            t 
           
         
        = 
        
          a 
          
            3 
            
              / 
             
            4 
           
         
        ψ 
        ( 
        
          S 
          
            s 
           
         
        
          A 
          
            a 
           
         
        ( 
        ⋅ 
        − 
        t 
        ) 
        ) 
        ∣ 
        a 
        > 
        0 
        , 
        s 
        ∈ 
        
          R 
         
        , 
        t 
        ∈ 
        
          
            R 
           
          
            2 
           
         
        } 
        , 
       
     
    {\displaystyle \operatorname {SH} _{\mathrm {cont} }(\psi )=\{\psi _{a,s,t}=a^{3/4}\psi (S_{s}A_{a}(\cdot -t))\mid a>0,s\in \mathbb {R} ,t\in \mathbb {R} ^{2}\},} 
      其对应的连续剪切小波转换:
  
    
      
        f 
        ↦ 
        
          
            
              S 
              H 
             
           
          
            ψ 
           
         
        f 
        ( 
        a 
        , 
        s 
        , 
        t 
        ) 
        = 
        ⟨ 
        f 
        , 
        
          ψ 
          
            a 
            , 
            s 
            , 
            t 
           
         
        ⟩ 
        , 
        f 
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
        , 
        ( 
        a 
        , 
        s 
        , 
        t 
        ) 
        ∈ 
        
          
            R 
           
          
            > 
            0 
           
         
        × 
        
          R 
         
        × 
        
          
            R 
           
          
            2 
           
         
        . 
       
     
    {\displaystyle f\mapsto {\mathcal {SH}}_{\psi }f(a,s,t)=\langle f,\psi _{a,s,t}\rangle ,\quad f\in L^{2}(\mathbb {R} ^{2}),\quad (a,s,t)\in \mathbb {R} _{>0}\times \mathbb {R} \times \mathbb {R} ^{2}.} 
      离散剪切小波系统 离散的剪切小波系统可以直接从
  
    
      
        
          SH 
          
            
              c 
              o 
              n 
              t 
             
           
         
         
        ( 
        ψ 
        ) 
       
     
    {\displaystyle \operatorname {SH} _{\mathrm {cont} }(\psi )} 
      
  
    
      
        
          
            R 
           
          
            > 
            0 
           
         
        × 
        
          R 
         
        × 
        
          
            R 
           
          
            2 
           
         
        . 
       
     
    {\displaystyle \mathbb {R} _{>0}\times \mathbb {R} \times \mathbb {R} ^{2}.} 
      
  
    
      
        { 
        ( 
        
          2 
          
            j 
           
         
        , 
        k 
        , 
        
          A 
          
            
              2 
              
                j 
               
             
           
          
            − 
            1 
           
         
        
          S 
          
            k 
           
          
            − 
            1 
           
         
        m 
        ) 
        ∣ 
        j 
        ∈ 
        
          Z 
         
        , 
        k 
        ∈ 
        
          Z 
         
        , 
        m 
        ∈ 
        
          
            Z 
           
          
            2 
           
         
        } 
        ⊆ 
        
          
            R 
           
          
            > 
            0 
           
         
        × 
        
          R 
         
        × 
        
          
            R 
           
          
            2 
           
         
        . 
       
     
    {\displaystyle \{(2^{j},k,A_{2^{j}}^{-1}S_{k}^{-1}m)\mid j\in \mathbb {Z} ,k\in \mathbb {Z} ,m\in \mathbb {Z} ^{2}\}\subseteq \mathbb {R} _{>0}\times \mathbb {R} \times \mathbb {R} ^{2}.} 
      从这个式子,与剪切运算子有关的离散剪切小波系统被定义为:
  
    
      
        SH 
         
        ( 
        ψ 
        ) 
        = 
        { 
        
          ψ 
          
            j 
            , 
            k 
            , 
            m 
           
         
        = 
        
          2 
          
            3 
            j 
            
              / 
             
            4 
           
         
        ψ 
        ( 
        
          S 
          
            k 
           
         
        
          A 
          
            
              2 
              
                j 
               
             
           
         
        ⋅ 
        
         
        − 
        m 
        ) 
        ∣ 
        j 
        ∈ 
        
          Z 
         
        , 
        k 
        ∈ 
        
          Z 
         
        , 
        m 
        ∈ 
        
          
            Z 
           
          
            2 
           
         
        } 
        , 
       
     
    {\displaystyle \operatorname {SH} (\psi )=\{\psi _{j,k,m}=2^{3j/4}\psi (S_{k}A_{2^{j}}\cdot {}-m)\mid j\in \mathbb {Z} ,k\in \mathbb {Z} ,m\in \mathbb {Z} ^{2}\},} 
      其相关的离散剪切小波转换被定义为:
  
    
      
        f 
        ↦ 
        
          
            
              S 
              H 
             
           
          
            ψ 
           
         
        f 
        ( 
        j 
        , 
        k 
        , 
        m 
        ) 
        = 
        ⟨ 
        f 
        , 
        
          ψ 
          
            j 
            , 
            k 
            , 
            m 
           
         
        ⟩ 
        , 
        f 
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
        , 
        ( 
        j 
        , 
        k 
        , 
        m 
        ) 
        ∈ 
        
          Z 
         
        × 
        
          Z 
         
        × 
        
          
            Z 
           
          
            2 
           
         
        . 
       
     
    {\displaystyle f\mapsto {\mathcal {SH}}_{\psi }f(j,k,m)=\langle f,\psi _{j,k,m}\rangle ,\quad f\in L^{2}(\mathbb {R} ^{2}),\quad (j,k,m)\in \mathbb {Z} \times \mathbb {Z} \times \mathbb {Z} ^{2}.} 
       范例 
设
  
    
      
        
          ψ 
          
            1 
           
         
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          R 
         
        ) 
       
     
    {\displaystyle \psi _{1}\in L^{2}(\mathbb {R} )}
       
  
    
      
        
          ∑ 
          
            j 
            ∈ 
            
              Z 
             
           
         
        
          | 
         
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            1 
           
         
        ( 
        
          2 
          
            − 
            j 
           
         
        ξ 
        ) 
        
          
            | 
           
          
            2 
           
         
        = 
        1 
        , 
        
          for a.e.  
         
        ξ 
        ∈ 
        
          R 
         
        , 
       
     
    {\displaystyle \sum _{j\in \mathbb {Z} }|{\hat {\psi }}_{1}(2^{-j}\xi )|^{2}=1,{\text{for a.e. }}\xi \in \mathbb {R} ,} 
      
  
    
      
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            1 
           
         
        ∈ 
        
          C 
          
            ∞ 
           
         
        ( 
        
          R 
         
        ) 
       
     
    {\displaystyle {\hat {\psi }}_{1}\in C^{\infty }(\mathbb {R} )} 
      
  
    
      
        supp 
         
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            1 
           
         
        ⊆ 
        [ 
        − 
        
          
            
              1 
              2 
             
           
         
        , 
        − 
        
          
            
              1 
              16 
             
           
         
        ] 
        ∪ 
        [ 
        
          
            
              1 
              16 
             
           
         
        , 
        
          
            
              1 
              2 
             
           
         
        ] 
       
     
    {\displaystyle \operatorname {supp} {\hat {\psi }}_{1}\subseteq [-{\tfrac {1}{2}},-{\tfrac {1}{16}}]\cup [{\tfrac {1}{16}},{\tfrac {1}{2}}]} 
      
  
    
      
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            1 
           
         
       
     
    {\displaystyle {\hat {\psi }}_{1}} 
      
  
    
      
        
          ψ 
          
            1 
           
         
       
     
    {\displaystyle \psi _{1}} 
      傅立叶变换。例如,可以选择
  
    
      
        
          ψ 
          
            1 
           
         
       
     
    {\displaystyle \psi _{1}} 
      
  
    
      
        
          ψ 
          
            2 
           
         
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          R 
         
        ) 
       
     
    {\displaystyle \psi _{2}\in L^{2}(\mathbb {R} )} 
      
  
    
      
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            2 
           
         
        ∈ 
        
          C 
          
            ∞ 
           
         
        ( 
        
          R 
         
        ) 
        , 
       
     
    {\displaystyle {\hat {\psi }}_{2}\in C^{\infty }(\mathbb {R} ),} 
      
  
    
      
        supp 
         
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            2 
           
         
        ⊆ 
        [ 
        − 
        1 
        , 
        1 
        ] 
       
     
    {\displaystyle \operatorname {supp} {\hat {\psi }}_{2}\subseteq [-1,1]} 
       
  
    
      
        
          ∑ 
          
            k 
            = 
            − 
            1 
           
          
            1 
           
         
        
          | 
         
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            2 
           
         
        ( 
        ξ 
        + 
        k 
        ) 
        
          
            | 
           
          
            2 
           
         
        = 
        1 
        , 
        
          for a.e.  
         
        ξ 
        ∈ 
        
          [ 
          
            − 
            1 
            , 
            1 
           
          ] 
         
        . 
       
     
    {\displaystyle \sum _{k=-1}^{1}|{\hat {\psi }}_{2}(\xi +k)|^{2}=1,{\text{for a.e. }}\xi \in \left[-1,1\right].} 
      通常会选择一个冲击函数 作为
  
    
      
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            2 
           
         
       
     
    {\displaystyle {\hat {\psi }}_{2}} 
      
  
    
      
        ψ 
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} 
      
  
    
      
        
          
            
              ψ 
              ^ 
             
           
         
        ( 
        ξ 
        ) 
        = 
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            1 
           
         
        ( 
        
          ξ 
          
            1 
           
         
        ) 
        
          
            
              
                ψ 
                ^ 
               
             
           
          
            2 
           
         
        
          ( 
          
            
              
                
                  ξ 
                  
                    2 
                   
                 
                
                  ξ 
                  
                    1 
                   
                 
               
             
           
          ) 
         
        , 
        ξ 
        = 
        ( 
        
          ξ 
          
            1 
           
         
        , 
        
          ξ 
          
            2 
           
         
        ) 
        ∈ 
        
          
            R 
           
          
            2 
           
         
        , 
       
     
    {\displaystyle {\hat {\psi }}(\xi )={\hat {\psi }}_{1}(\xi _{1}){\hat {\psi }}_{2}\left({\tfrac {\xi _{2}}{\xi _{1}}}\right),\quad \xi =(\xi _{1},\xi _{2})\in \mathbb {R} ^{2},} 
      这被称作一个典型的剪切小波。其对应的离散剪切小波系统
  
    
      
        SH 
         
        ( 
        ψ 
        ) 
       
     
    {\displaystyle \operatorname {SH} (\psi )} 
      
  
    
      
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle L^{2}(\mathbb {R} ^{2})} 
      [5] 
另外一个例子是紧支撑的剪切小波系统,其中要选定紧支撑函数
  
    
      
        ψ 
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle \psi \in L^{2}(\mathbb {R} ^{2})} 
      
  
    
      
        SH 
         
        ( 
        ψ 
        ) 
       
     
    {\displaystyle \operatorname {SH} (\psi )} 
      
  
    
      
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle L^{2}(\mathbb {R} ^{2})} 
      [3] [6] [7] [8] 
  
    
      
        SH 
         
        ( 
        ψ 
        ) 
       
     
    {\displaystyle \operatorname {SH} (\psi )} 
      
  
    
      
        f 
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle f\in L^{2}(\mathbb {R} ^{2})} 
      
 自适应锥形剪切小波 
上述所定义的剪切小波有其缺陷,那就是剪切小波元素的方向性偏差与大的剪切参数有关联。在典型剪切小波的频率拼接(在#范例 中的图可见)中可以看到这个影响,当剪切参数
  
    
      
        s 
       
     
    {\displaystyle s} 
      
  
    
      
        
          ξ 
          
            2 
           
         
       
     
    {\displaystyle \xi _{2}} 
      
  
    
      
        
          ξ 
          
            2 
           
         
       
     
    {\displaystyle \xi _{2}} 
      
为了解决这个问题,频域被分成一个低频部分和两个锥形部分(如图所示):
  
    
      
        
          
            
              
                
                  
                    R 
                   
                 
               
              
                = 
                
                  { 
                  
                    ( 
                    
                      ξ 
                      
                        1 
                       
                     
                    , 
                    
                      ξ 
                      
                        2 
                       
                     
                    ) 
                    ∈ 
                    
                      
                        R 
                       
                      
                        2 
                       
                     
                    ∣ 
                    
                      | 
                     
                    
                      ξ 
                      
                        1 
                       
                     
                    
                      | 
                     
                    , 
                    
                      | 
                     
                    
                      ξ 
                      
                        2 
                       
                     
                    
                      | 
                     
                    ≤ 
                    1 
                   
                  } 
                 
                , 
               
             
            
              
                
                  
                    
                      C 
                     
                   
                  
                    
                      h 
                     
                   
                 
               
              
                = 
                
                  { 
                  
                    ( 
                    
                      ξ 
                      
                        1 
                       
                     
                    , 
                    
                      ξ 
                      
                        2 
                       
                     
                    ) 
                    ∈ 
                    
                      
                        R 
                       
                      
                        2 
                       
                     
                    ∣ 
                    
                      | 
                     
                    
                      ξ 
                      
                        2 
                       
                     
                    
                      / 
                     
                    
                      ξ 
                      
                        1 
                       
                     
                    
                      | 
                     
                    ≤ 
                    1 
                    , 
                    
                      | 
                     
                    
                      ξ 
                      
                        1 
                       
                     
                    
                      | 
                     
                    > 
                    1 
                   
                  } 
                 
                , 
               
             
            
              
                
                  
                    
                      C 
                     
                   
                  
                    
                      v 
                     
                   
                 
               
              
                = 
                
                  { 
                  
                    ( 
                    
                      ξ 
                      
                        1 
                       
                     
                    , 
                    
                      ξ 
                      
                        2 
                       
                     
                    ) 
                    ∈ 
                    
                      
                        R 
                       
                      
                        2 
                       
                     
                    ∣ 
                    
                      | 
                     
                    
                      ξ 
                      
                        1 
                       
                     
                    
                      / 
                     
                    
                      ξ 
                      
                        2 
                       
                     
                    
                      | 
                     
                    ≤ 
                    1 
                    , 
                    
                      | 
                     
                    
                      ξ 
                      
                        2 
                       
                     
                    
                      | 
                     
                    > 
                    1 
                   
                  } 
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\mathcal {R}}&=\left\{(\xi _{1},\xi _{2})\in \mathbb {R} ^{2}\mid |\xi _{1}|,|\xi _{2}|\leq 1\right\},\\{\mathcal {C}}_{\mathrm {h} }&=\left\{(\xi _{1},\xi _{2})\in \mathbb {R} ^{2}\mid |\xi _{2}/\xi _{1}|\leq 1,|\xi _{1}|>1\right\},\\{\mathcal {C}}_{\mathrm {v} }&=\left\{(\xi _{1},\xi _{2})\in \mathbb {R} ^{2}\mid |\xi _{1}/\xi _{2}|\leq 1,|\xi _{2}|>1\right\}.\end{aligned}}} 
        由典型剪切小波生成的自适应性剪切小波系统的频率拼接
这个自适应性剪切小波系统是由三个部分组成,每个部分都对应到这些频域之一,这个系统是由三个函数
  
    
      
        ϕ 
        , 
        ψ 
        , 
        
          
            
              ψ 
              ~ 
             
           
         
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        
          
            R 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle \phi ,\psi ,{\tilde {\psi }}\in L^{2}(\mathbb {R} ^{2})} 
      
  
    
      
        c 
        = 
        ( 
        
          c 
          
            1 
           
         
        , 
        
          c 
          
            2 
           
         
        ) 
        ∈ 
        ( 
        
          
            R 
           
          
            > 
            0 
           
         
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle c=(c_{1},c_{2})\in (\mathbb {R} _{>0})^{2}} 
      
  
    
      
        SH 
         
        ( 
        ϕ 
        , 
        ψ 
        , 
        
          
            
              ψ 
              ~ 
             
           
         
        ; 
        c 
        ) 
        = 
        Φ 
        ( 
        ϕ 
        ; 
        
          c 
          
            1 
           
         
        ) 
        ∪ 
        Ψ 
        ( 
        ψ 
        ; 
        c 
        ) 
        ∪ 
        
          
            
              Ψ 
              ~ 
             
           
         
        ( 
        
          
            
              ψ 
              ~ 
             
           
         
        ; 
        c 
        ) 
        , 
       
     
    {\displaystyle \operatorname {SH} (\phi ,\psi ,{\tilde {\psi }};c)=\Phi (\phi ;c_{1})\cup \Psi (\psi ;c)\cup {\tilde {\Psi }}({\tilde {\psi }};c),} 
      其中:
  
    
      
        
          
            
              
                Φ 
                ( 
                ϕ 
                ; 
                
                  c 
                  
                    1 
                   
                 
                ) 
               
              
                = 
                { 
                
                  ϕ 
                  
                    m 
                   
                 
                = 
                ϕ 
                ( 
                ⋅ 
                
                 
                − 
                
                  c 
                  
                    1 
                   
                 
                m 
                ) 
                ∣ 
                m 
                ∈ 
                
                  
                    Z 
                   
                  
                    2 
                   
                 
                } 
                , 
               
             
            
              
                Ψ 
                ( 
                ψ 
                ; 
                c 
                ) 
               
              
                = 
                { 
                
                  ψ 
                  
                    j 
                    , 
                    k 
                    , 
                    m 
                   
                 
                = 
                
                  2 
                  
                    3 
                    j 
                    
                      / 
                     
                    4 
                   
                 
                ψ 
                ( 
                
                  S 
                  
                    k 
                   
                 
                
                  A 
                  
                    
                      2 
                      
                        j 
                       
                     
                   
                 
                ⋅ 
                
                 
                − 
                
                  M 
                  
                    c 
                   
                 
                m 
                ) 
                ∣ 
                j 
                ≥ 
                0 
                , 
                
                  | 
                 
                k 
                
                  | 
                 
                ≤ 
                ⌈ 
                
                  2 
                  
                    j 
                    
                      / 
                     
                    2 
                   
                 
                ⌉ 
                , 
                m 
                ∈ 
                
                  
                    Z 
                   
                  
                    2 
                   
                 
                } 
                , 
               
             
            
              
                
                  
                    
                      Ψ 
                      ~ 
                     
                   
                 
                ( 
                
                  
                    
                      ψ 
                      ~ 
                     
                   
                 
                ; 
                c 
                ) 
               
              
                = 
                { 
                
                  
                    
                      
                        ψ 
                        ~ 
                       
                     
                   
                  
                    j 
                    , 
                    k 
                    , 
                    m 
                   
                 
                = 
                
                  2 
                  
                    3 
                    j 
                    
                      / 
                     
                    4 
                   
                 
                ψ 
                ( 
                
                  
                    
                      
                        S 
                        ~ 
                       
                     
                   
                  
                    k 
                   
                 
                
                  
                    
                      
                        A 
                        ~ 
                       
                     
                   
                  
                    
                      2 
                      
                        j 
                       
                     
                   
                 
                ⋅ 
                
                 
                − 
                
                  
                    
                      
                        M 
                        ~ 
                       
                     
                   
                  
                    c 
                   
                 
                m 
                ) 
                ∣ 
                j 
                ≥ 
                0 
                , 
                
                  | 
                 
                k 
                
                  | 
                 
                ≤ 
                ⌈ 
                
                  2 
                  
                    j 
                    
                      / 
                     
                    2 
                   
                 
                ⌉ 
                , 
                m 
                ∈ 
                
                  
                    Z 
                   
                  
                    2 
                   
                 
                } 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\Phi (\phi ;c_{1})&=\{\phi _{m}=\phi (\cdot {}-c_{1}m)\mid m\in \mathbb {Z} ^{2}\},\\\Psi (\psi ;c)&=\{\psi _{j,k,m}=2^{3j/4}\psi (S_{k}A_{2^{j}}\cdot {}-M_{c}m)\mid j\geq 0,|k|\leq \lceil 2^{j/2}\rceil ,m\in \mathbb {Z} ^{2}\},\\{\tilde {\Psi }}({\tilde {\psi }};c)&=\{{\tilde {\psi }}_{j,k,m}=2^{3j/4}\psi ({\tilde {S}}_{k}{\tilde {A}}_{2^{j}}\cdot {}-{\tilde {M}}_{c}m)\mid j\geq 0,|k|\leq \lceil 2^{j/2}\rceil ,m\in \mathbb {Z} ^{2}\},\end{aligned}}} 
      式子中的一些变数定义如下;
  
    
      
        
          
            
              
                
                  
                    
                      
                        A 
                        ~ 
                       
                     
                   
                  
                    a 
                   
                 
                = 
                
                  
                    [ 
                    
                      
                        
                          
                            a 
                            
                              1 
                              
                                / 
                               
                              2 
                             
                           
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          a 
                         
                       
                     
                    ] 
                   
                 
                , 
                a 
                > 
                0 
                , 
                
                  
                    
                      
                        S 
                        ~ 
                       
                     
                   
                  
                    s 
                   
                 
                = 
                
                  
                    [ 
                    
                      
                        
                          1 
                         
                        
                          0 
                         
                       
                      
                        
                          s 
                         
                        
                          1 
                         
                       
                     
                    ] 
                   
                 
                , 
                s 
                ∈ 
                
                  R 
                 
                , 
                
                  M 
                  
                    c 
                   
                 
                = 
                
                  
                    [ 
                    
                      
                        
                          
                            c 
                            
                              1 
                             
                           
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          
                            c 
                            
                              2 
                             
                           
                         
                       
                     
                    ] 
                   
                 
                , 
                
                  and 
                 
                
                  
                    
                      
                        M 
                        ~ 
                       
                     
                   
                  
                    c 
                   
                 
                = 
                
                  
                    [ 
                    
                      
                        
                          
                            c 
                            
                              2 
                             
                           
                         
                        
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          
                            c 
                            
                              1 
                             
                           
                         
                       
                     
                    ] 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&{\tilde {A}}_{a}={\begin{bmatrix}a^{1/2}&0\\0&a\end{bmatrix}},\;a>0,\quad {\tilde {S}}_{s}={\begin{bmatrix}1&0\\s&1\end{bmatrix}},\;s\in \mathbb {R} ,\quad M_{c}={\begin{bmatrix}c_{1}&0\\0&c_{2}\end{bmatrix}},\quad {\text{and}}\quad {\tilde {M}}_{c}={\begin{bmatrix}c_{2}&0\\0&c_{1}\end{bmatrix}}.\end{aligned}}} 
      系统
  
    
      
        Ψ 
        ( 
        ψ 
        ) 
       
     
    {\displaystyle \Psi (\psi )} 
      
  
    
      
        
          
            
              Ψ 
              ~ 
             
           
         
        ( 
        
          
            
              ψ 
              ~ 
             
           
         
        ) 
       
     
    {\displaystyle {\tilde {\Psi }}({\tilde {\psi }})} 
      
  
    
      
        
          x 
          
            1 
           
         
       
     
    {\displaystyle x_{1}} 
      
  
    
      
        
          x 
          
            2 
           
         
       
     
    {\displaystyle x_{2}} 
      
  
    
      
        
          
            
              C 
             
           
          
            
              h 
             
           
         
       
     
    {\displaystyle {\mathcal {C}}_{\mathrm {h} }} 
      
  
    
      
        
          
            
              C 
             
           
          
            
              v 
             
           
         
       
     
    {\displaystyle {\mathcal {C}}_{\mathrm {v} }} 
      
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
      
  
    
      
        
          
            R 
           
         
       
     
    {\displaystyle {\mathcal {R}}} 
      
 应用 相关条目 参考 
^ Guo, Kanghui, Gitta Kutyniok, and Demetrio Labate. "Sparse multidimensional representations using anisotropic dilation and shear operators." Wavelets and Splines (Athens, GA, 2005), G. Chen and MJ Lai, eds., Nashboro Press, Nashville, TN (2006): 189–201.
PDF PDF  
^ Guo, Kanghui, and Demetrio Labate. "Optimally sparse multidimensional representation using shearlets." SIAM Journal on Mathematical Analysis 39.1  (2007): 298–318.
PDF PDF  
^ 3.0 3.1   Kutyniok, Gitta, and Wang-Q Lim. "Compactly supported shearlets are optimally sparse." Journal of Approximation Theory 163.11  (2011): 1564–1589.
PDF PDF  
^ Donoho, David Leigh. "Sparse components of images and optimal atomic decompositions." Constructive Approximation 17.3  (2001): 353–382.
PDF PDF  
^ 5.0 5.1 5.2 5.3 5.4   Kutyniok, Gitta, and Demetrio Labate, eds. Shearlets: Multiscale analysis for multivariate data . Springer, 2012, 编辑